

THE UNIVERSITY OF DANANG

DANANG UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INFORMATION TECHNOLOGY

GRADUATION PROJECT THESIS

MAJOR: INFORMATION TECHNOLOGY

SPECIALTY: SOFTWARE TECHNOLOGY

PROJECT TITLE:

SECURITY FOR E-LEARNING WEBSITE

Instructor: NGUYEN THE XUAN LY M.S

Student: BUI QUOC HUY

Student ID: 102190315

Class: 19TCLC_Nhat1

Da Nang, 1/2025

B

u
i

Q
u

o
c

H
u

y

 P

R
O

J
E

C
T

’
S

 N
A

M
E

 :

S

E
C

U
R

IT
Y

 F
O

R
 E

-L
E

A
R

N
IN

G
 W

E
B

S
IT

E

 2

0
2
5

THE UNIVERSITY OF DANANG

DANANG UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INFORMATION TECHNOLOGY

GRADUATION PROJECT THESIS

MAJOR: INFORMATION TECHNOLOGY

SPECIALTY: SOFTWARE TECHNOLOGY

PROJECT TITLE:

SECURITY FOR E-LEARNING WEBSITE

Instructor: NGUYEN THE XUAN LY M.S

Student: BUI QUOC HUY

Student ID: 102190315

Class: 19TCLC_Nhat1

Da Nang, 1/2025

SUMMARY

Topic title: Security for e-learning website

Student name: Bui Quoc Huy

Student ID: 102190315 Class: 19TCLC_Nhat1

This project aimed to enhance Moodle’s functionality and security by integrating

OpenAI’s API for automated quiz generation and addressing critical vulnerabilities,

including Stored XSS, Open Redirect, and CSRF. Through simulated attacks and the

implementation of robust fixes, the project demonstrated the interplay between

innovation and security in educational platforms. By combining modern features with

stringent security measures, this project serves as a valuable resource for improving

Moodle’s reliability and usability.

DA NANG UNIVERSITY

UNIVERSITY OF SICIENCE AND

TECHNOLOGY

FALCUTY

 INFORMATION TECHNOLOGY

THE SOCIALIST REPUBLIC OF VIETNAM

Independence - Freedom - Happiness

GRADUATION PROJECT REQUIREMENTS

Student Name: Bui Quoc Huy Student ID : 102190315

Class: 19TCLC_Nhat1 Faculty: Information Technology Major: Cyber Security

1. Topic title:

Security for E-Learning Website

2. Project topic : ☐has signed intellectual property agreement for final result

3. Initial figure and data:

…...………………………………………………………………………………………

…...………………………………………………………………………………………

…...………………………………………………………………………………………

…...………………………………………………………………………………………

Content of the explanations and calculations:

- Introduction

- Overview of Moodle and common CVEss

- Define requirements and design feature

Development and result evaluation

- Inclusion

Reference

4. Drawings, charts (specify the types and sizes of drawings):

…...………………………………………………………………………………………

…...………………………………………………………………………………………

…...………………………………………………………………………………………

…...………………………………………………………………………………………

5. Name of instructor: Content parts:

Nguyen The Xuan Ly M.S

6. Date of assignment : ……../……./202…..

7. Date of completion : ……../……./202…..

 Đà Nẵng, date month year 202

Head of Division…………………. Instructor

i

PREFACE AND ACKNOWLEDGEMENT

The successful completion of this thesis has been made possible through the guidance,

support, and encouragement of numerous individuals and organizations. With heartfelt

gratitude and utmost respect, I extend my sincere thanks to all who have contributed to

my academic and research journey.

First and foremost, I am deeply grateful to the dedicated faculty members of the

Faculty of Information Technology at Da Nang University of Technology. Your

unwavering commitment to teaching, mentorship, and nurturing students has been

instrumental in shaping my knowledge and skills. Your guidance has been invaluable

in helping me complete this thesis, titled "Security for e-learning website."

I am especially indebted to my supervisor, MSc. Nguyen The Xuan Ly, for his

insightful guidance and persistent support throughout this research. His

encouragement, constructive feedback, and expertise have been pivotal in enabling me

to navigate challenges and successfully bring this work to completion.

I also extend my gratitude to the leadership and staff of Da Nang University of

Technology, as well as the functional departments, for their continuous assistance and

facilitation during my studies. Their contributions have provided me with the resources

and environment necessary to pursue my academic endeavors.

Despite my best efforts, as a student with limited experience and time, this thesis may

still contain shortcomings. I welcome constructive feedback and suggestions from my

teachers and peers to help refine my understanding and improve my future work.

Finally, I wish all the educators and staff of Da Nang University good health,

inspiration, and continued success in their noble mission of shaping future generations

through education.

ii

ASSURRANCE

I hereby affirm the following:

1. The content of this senior project has been independently conducted and

developed by myself under the mentorship and guidance of my supervisor,

MSc. Nguyen The Xuan Ly.

2. All references, sources, and materials utilized in this thesis have been

appropriately cited, with full acknowledgment of the original authors, including

the title, publication details, and context.

3. I take full responsibility for the integrity and authenticity of this thesis. Should

any instances of plagiarism or dishonesty be identified, I accept all

consequences and accountability.

This declaration is made with complete honesty and transparency to uphold the

principles of academic integrity and ethics.

Student Performed

iii

TABLE OF CONTENT

{ }

{ }

Summary

Thesis mission

Preface and Acknowledgement i

Assurance ii

Table of contents iii

List of table, drawing, diagram v

List of acronyms vi

 Trang

Chapter 1 ...

1.1 .. 1

1.1.1

1.1.2

1.1.3

1.2 7

1.2.1

1.2.2….................................

1.3 .. 22

Chapter 2 ...

2.1…..

2.1.1….

2.1.2…..

2.2

…..

Chapter 3 50

3.1…..

3.1.1….

3.1.2….

3.2 ………………

iv

CONCLUSION 68

REFERENCES 70

APPENDIX

v

LIST OF TABLES, PICTURES

TABLE 1.1 {size

13}...

TABLE 1.2

……..

TABLE 1.3

……..

…….……..

PICTURE 1.1 ...

PICTURE 1.2

..

PICTURE 1.3

..

…….……..

vi

LIST OF SYMBOL, ACRONYM

SYMBOL:

…….……..

…….……..

…….……..

…….……..

…….……..

…….……..

ACRONYM:

…….……..

…….……..

…….……..

…….……..

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 1

INTRODUCTION

Moodle is one of the most widely used learning management systems (LMS)

worldwide, serving educational institutions and corporate training environments.

However, its popularity and open-source nature make it a prime target for malicious

attacks. The primary motivation behind this project is to address Moodle’s security

vulnerabilities and demonstrate ways to improve its robustness against cyber threats.

By simulating vulnerabilities and applying fixes, this project highlights both the risks

and the solutions, ultimately aiming to secure educational platforms and safeguard

sensitive information.

The integration of OpenAI APIs introduces a modern feature that enhances Moodle’s

utility by enabling automated quiz generation. This feature not only streamlines the

teaching process but also demonstrates how advanced technologies can coexist with

strong security protocols. The dual focus of this project—feature enhancement and

security hardening—ensures a comprehensive understanding of the interplay between

functionality and security in modern web applications.

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 2

Chapter 1: OVERVIEW OF MOODLE AND CVE VULNERABILITIES

1.1. Moodle setup

1.1.1. Frontend Technologies:

Breakdown of programming languages and frameworks used in Moodle for its

frontend

HTML5:

• Used for structuring the Moodle interface and providing semantic content.

CSS3:

• Provides styling for themes, ensuring a responsive and visually appealing user

interface.

• Supports frameworks like Bootstrap for consistent design and responsiveness.

JavaScript:

• Adds interactivity to the Moodle user interface.

• Uses jQuery and AMD modules for client-side scripting.

Figure 1.1. Frontend familiar Technologies

Mustache Templates:

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 3

• Moodle uses Mustache for rendering frontend views dynamically with data from

the backend.

YUI Library (Legacy):

• Some parts of Moodle still use Yahoo User Interface (YUI) for frontend

components, although newer versions are transitioning away from it.

AJAX:

• Enables dynamic content updates without full-page reloads (e.g., for grading or

loading quiz questions).

1.1.2. Backend Technologies

PHP:

• Primary programming language used to develop Moodle's core application logic.

• Supports modular architecture for plugins and custom development.

Moodle Framework:

• Moodle has its own framework, built in PHP, which provides APIs for managing

users, courses, quizzes, and other functionality.

Figure 1.2. Diagram of Moodle Architecture

CRON Jobs:

• Moodle relies on PHP scripts executed by CRON jobs to handle background

tasks like sending emails, grading, and data cleanup.

1.1.3. Database Technologies

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 4

MySQL:

• The most common relational database used with Moodle. It stores user data,

course content, logs, and system configurations.

• Reliable, scalable, and well-documented.

Figure 1.3. MariaDB and MySQL

MariaDB:

 A fork of MySQL, often used as a drop-in replacement with performance

improvements.

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 5

Figure 1.4. MariaDB set up

For this project I chose MariaDB because in my opinion MariaDB is often better than

MySQL for large data sets, performance-critical workloads, and complex

queries. MariaDB is a free, open-source clone of MySQL that was created by

MySQL's original developers.

Features:

• Scalability: MariaDB is more scalable than MySQL.

• Query speed: MariaDB has faster query speeds than MySQL.

• Storage engines: MariaDB supports row and columnar storage, while MySQL

focuses on its InnoDB storage engine.

• Regular expressions: MariaDB uses Perl-compatible regular expressions (PCRE),

which are more powerful than MySQL's regex support.

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 6

• Thread pool: MariaDB's thread pool mechanism allows it to handle up to 200,000

simultaneous connections.

• KILL command: MariaDB's KILL command can kill all queries for a user or a

query ID.

Use cases:

• Large data sets: MariaDB is good for managing large-sized data.

• Performance-critical workloads: MariaDB is a strong choice for performance-

critical workloads.

• Complex queries: MariaDB is better at optimizing questions.

• Big, fast applications: MariaDB is a good choice for big, fast applications.

Ease of use:

• MariaDB is easy to install.

• Switching from MySQL to MariaDB is a simple task.

PostgreSQL:

• An alternative relational database supported by Moodle, known for advanced

features, scalability, and performance.

Microsoft SQL Server:

• Supported in enterprise environments where Microsoft-based solutions are

preferred.

Oracle Database:

• Another supported database, often used in large-scale enterprise setups requiring

high performance and security.

1.1.4. Tools support web security

Server-Side Security Measures

• PHP Security Best Practices:

- Enforcing safe_mode and restricting functions like exec(), system(), etc.

- Using prepared statements and parameterized queries to prevent SQL

injection.

- Disabling allow_url_include and allow_url_fopen in php.ini.

• Database Security:

- Support for secure database connections using SSL.

- Role-based database access to restrict user privileges.

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 7

• HTTPS (SSL/TLS Encryption):

- Ensures secure communication between the server and clients by

encrypting all traffic.

- Uses tools like Let's Encrypt for obtaining free SSL certificates.

Figure 1.5. HTTPS gives better security

• File Upload Security:

- Validation of uploaded files to ensure only allowed formats are accepted.

- Storing files outside the web root to prevent direct access.

- Using Moodle's File API for secure file management.

Authentication and Authorization

• Password Hashing:

- Moodle uses secure algorithms like bcrypt for storing passwords.

• Authentication Plugins:

- Supports OAuth2, LDAP, SAML, and other secure authentication

protocols.

- Integration with multi-factor authentication (MFA) for added security.

• Role and Capability Management:

- Granular control over user permissions using Moodle's Role and

Capability framework.

- Restricts unauthorized access to sensitive areas.

Built-in Security Features in Moodle

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 8

• Input Validation:

- Moodle's clean_param() function sanitizes user input to prevent injection

attacks.

• Cross-Site Scripting (XSS) Prevention:

- Output encoding with Moodle’s s() function ensures that scripts are not

executed unintentionally.

• Cross-Site Request Forgery (CSRF) Tokens:

- The sesskey parameter and require_sesskey() function help prevent

CSRF attacks.

• Session Security:

- Regenerates session IDs upon login to prevent session fixation.

- Enforces secure cookies (HttpOnly and Secure flags).

• Captcha Support:

- Adds CAPTCHA to login and form submissions to prevent automated

attacks.

Security Tools for Monitoring and Patching

• Moodle Security Overview Report:

- Provides a built-in dashboard for administrators to identify and address

security issues.

• Updates and Patches:

- Regular security updates and patches provided by the Moodle

community.

- Integrating tools like Git to automate updates.

• Logging and Auditing:

- Built-in logging system records all actions for auditing purposes.

- Integration with external monitoring tools like ELK Stack or Splunk for

enhanced visibility.

Network and Infrastructure Security

• Firewall Configuration:

- Using tools like iptables, UFW, or cloud-based firewalls to restrict

unauthorized traffic.

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 9

Figure 1.6. Firewall Misconfiguration Attack

• Content Delivery Network (CDN):

- Services like Cloudflare or AWS CloudFront to protect against DDoS

attacks.

• Web Application Firewall (WAF):

- Tools like ModSecurity to detect and block malicious traffic.

• Network Isolation:

- Hosting Moodle on isolated virtual machines or containers (e.g., Docker)

to contain potential breaches.

Vulnerability Scanning and Penetration Testing

• Automated Scanning Tools:

- OWASP ZAP, Burp Suite, or Nessus to identify vulnerabilities like XSS,

SQL injection, and CSRF.

• Code Review Tools:

- Static code analysis tools like SonarQube to ensure secure coding

practices.

• Penetration Testing:

- Conduct regular penetration testing to simulate attacks like stored XSS,

SQL injection, and authentication bypass.

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 10

Secure Development Practices

• Framework Security:

- Adhering to the OWASP Top 10 security practices during development.

- Utilizing Moodle’s APIs for secure implementation of custom plugins or

themes.

• Backup and Recovery:

- Regular automated backups of the database and user files.

- Encryption of backup files for additional security.

1.2. Common Moodle CVEs

1.2.1. Overall look

 This table provides an analysis of vulnerabilities in Moodle by type and year

(2015-2024), highlighting the number of reported vulnerabilities for specific categories

such as SQL Injection, XSS (Cross-Site Scripting), CSRF (Cross-Site Request

Forgery), and others.

Figure 1.7 Vulnerabilities by categories

Cross-Site Scripting (XSS) emerges as the most frequent vulnerability across the

years, peaking in 2023 with 14 occurrences. SQL Injection is comparatively rare but

saw a spike in 2022 and 2023 with five occurrences each. Other categories, such as

CSRF and Open Redirect, show occasional fluctuations, with CSRF reaching a peak of

three in 2016 and 2022. Notably, Open Redirect remains consistently low, with

occurrences ranging between zero and two annually.

Stored XSS is an increasingly critical issue within Moodle, exacerbated by its potential

to persistently affect multiple users. Combined with input validation issues, this

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 11

underscores the need for heightened attention to sanitizing and validating inputs.

Directory Traversal and File Inclusion have minimal occurrences, indicating they are

less of a concern for Moodle, but their implications still demand attention in security

measures.

Figure 1.8 Vulnerabilities by impact types

In terms of impact, Information Leak is a consistent concern, particularly in 2016 with

11 cases. Privilege Escalation and Code Execution also stand out as notable impacts,

with a significant rise in Privilege Escalation incidents in 2019 and 2022, both

recording five occurrences. Denial of Service (DoS), while not as frequent, had spikes

in earlier years, particularly in 2015 and 2016, with two instances each. The data

highlights a trend where Information Leak and Privilege Escalation vulnerabilities tend

to occur in tandem, emphasizing the criticality of access control and secure data

handling.

When comparing the two tables, there is a strong link between specific vulnerability

types and their impacts. For example, XSS vulnerabilities directly contribute to

Information Leak and Privilege Escalation incidents. The steady rise in XSS

vulnerabilities, especially in recent years, correlates with the increasing complexity of

web applications and the growing attack surface in Moodle’s ecosystem. SQL

Injection, while less frequent, poses a severe threat when exploited, often leading to

Code Execution or Information Leak scenarios.

The period between 2019 and 2023 shows a rise in the dive’sity of vulnerability types

and their associated impacts. This trend could be attributed to the increased adoption

of Moodle in various contexts, leading to more frequent and diverse testing. However,

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 12

the decline in certain categories such as Directory Traversal and File Inclusion

suggests improvements in those areas, potentially due to robust security patches and

development practices.

In conclusion, Moodle’s security landscape shows both progress and persistent

challenges. While certain vulnerabilities like Directory Traversal and File Inclusion

have been largely mitigated, XSS and Information Leak remain dominant concerns.

The upward trend in XSS vulnerabilities highlights the need for continued focus on

secure input handling and validation mechanisms. By analyzing the link between

vulnerability types and their impacts, Moodle developers and administrators can better

prioritize their security efforts to minimize risks effectively.

1.2.2. Specific Vulnerabilities

 Moodle-Specific Vulnerabilities

CVE-2022-45143 (Open Redirect Vulnerability)

• Definition:

 Open Redirect vulnerabilities occur when an application incorrectly processes

URLs provided by users, allowing them to redirect victims to malicious

websites.

• Cyberattack:

 An attacker embeds a malicious URL as a parameter (e.g.,

http://example.com/redirect?url=http://malicious.com). When the victim clicks

the link, they are redirected to the malicious site.

• Consequences:

- Phishing attacks become easier, tricking users into giving sensitive information.

- Reduced trust in the Moodle platform.

• Prevention:

- Validate and sanitize all user-supplied URLs.

- Restrict redirects to trusted and whitelisted domains.

CVE-2021-40524 (Stored XSS)

• Definition:

 Stored XSS (Cross-Site Scripting) allows attackers to inject malicious scripts

into Moodle’s database, which execute when accessed by a user.

• Cyberattack:

 Attackers inject malicious JavaScript code into form fields (e.g., chat

messages, forum posts). When another user views the content, the script

executes in their browser.

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 13

Figure 1.9. XSS Cyberattack

• Consequences:

- Session hijacking.

- Credential theft.

- Unauthorized actions (e.g., changing user roles).

• Prevention:

- Use Moodle’s built-in clean_param() function to sanitize input.

- Encode all output using Moodle’s s() function to prevent script execution.

CVE-2020-14318 (Authentication Bypass)

• Definition:

 This vulnerability allows attackers to bypass authentication mechanisms due to

weak or mismanaged session tokens.

• Cyberattack:

Attackers exploit poorly validated session tokens or replay a previously

captured token to gain unauthorized access.

• Consequences:

- Unauthorized users can access sensitive user accounts or admin pages.

- Complete control of Moodle systems.

• Prevention:

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 14

- Use strong token validation methods.

- Enforce HTTPS to prevent token interception.

- Implement token expiration and refresh mechanisms.

CVE-2019-10193 (SQL Injection)

• Definition:

 SQL Injection occurs when attackers manipulate input fields to execute

malicious SQL queries on the database.

• Cyberattack:

 An attacker inputs SQL commands into vulnerable fields (e.g., ' OR 1=1 --) to

access or modify database records.

Figure 1.10. SQL Injection Attack

• Consequences:

- Unauthorized data access or modification.

- Potential deletion of database contents.

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 15

• Prevention:

- Use prepared statements ($DB->get_records_sql()) and parameterized queries.

- Avoid directly concatenating user input into SQL queries.

CVE-2018-1133 (Sensitive Information Disclosure)

• Definition:

 This vulnerability leaks sensitive information like database credentials or user

data via debugging messages.

• Cyberattack:

 Attackers trigger errors or exceptions, revealing debug messages that expose

internal system details.

• Consequences:

- Compromise of database credentials or system configuration.

- Further attacks (e.g., privilege escalation).

• Prevention:

- Disable debugging in production ($CFG->debug = DEBUG_NONE).

- Use custom error pages to prevent raw error outputs.

CVE-2017-2641 (Session Fixation)

• Definition:

 Session fixation allows attackers to set a user’s session ID before the user

authenticates, enabling them to hijack the session later.

• Cyberattack:

 Attackers craft a malicious link with a predefined session ID and trick users

into logging in through it.

• Consequences:

 Attackers gain unauthorized access to user accounts.

• Prevention:

- Regenerate session IDs upon login (session_regenerate_id() in PHP).

- Use secure cookie flags (e.g., HttpOnly and Secure).

CVE-2016-3737 (Insufficient Access Control)

• Definition:

 Improper access control allows unauthorized users to access restricted areas of

Moodle (e.g., admin pages).

• Cyberattack:

 Attackers manipulate URLs or session data to access admin-level features.

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 16

• Consequences:

- Unauthorized modifications (e.g., adding/removing courses or users).

- System compromise.

• Prevention:

- Use Moodle’s require_capability() function to enforce permissions.

- Regularly audit roles and capabilities.

CVE-2015-2266 (File Upload Vulnerability)

• Definition:

 This vulnerability allows attackers to upload malicious files, such as PHP

scripts, to the server.

• Cyberattack:

 An attacker uploads a malicious .php file through a vulnerable upload form and

executes it.

• Consequences:

- Remote code execution.

- Complete control of the server.

• Prevention:

- Restrict file types to safe formats (e.g., .jpg, .png).

- Store uploaded files outside the web root.

CVE-2014-7833 (CSRF)

• Definition:

 CSRF (Cross-Site Request Forgery) tricks users into performing unwanted

actions on Moodle while authenticated.

• Cyberattack:

 Attackers create a malicious website that sends requests to Moodle on behalf of

the logged-in user.

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 17

Figure 1.11. CSRF Attack

• Consequences:

- Unintended actions (e.g., changing user roles or deleting content).

- Compromised system integrity.

• Prevention:

- Use Moodle’s built-in CSRF tokens (sesskey parameter).

- Validate requests using require_sesskey().

PHP-Related Vulnerabilities

CVE-2012-3394 (Arbitrary File Inclusion)

• Definition:

 Improper use of PHP functions (include(), require()) allows attackers to include

unauthorized files.

• Cyberattack:

 Attackers manipulate file paths in the URL or form fields to include files like

/etc/passwd.

• Consequences:

- Exposure of sensitive server files.

- Execution of malicious code.

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 18

• Prevention:

- Validate and sanitize file paths.

- Use realpath() to resolve file paths and restrict to specific directories.

Misconfigured PHP File Uploads (Linked to CVE-2015-2266)

• Definition:

 Improper PHP configuration allows malicious file uploads to execute.

• Cyberattack:

 Upload a .php file as a script through a vulnerable Moodle form.

• Consequences:

- Remote code execution.

- Server takeover.

• Prevention:

- Set file_uploads = Off in php.ini if file uploads aren’t required.

- Use move_uploaded_file() to store files in a safe location.

Chapter 2: DEFINE REQUIREMENTS AND DESIGN FEATURES

2.1. Project Requirements:

2.1.1. Security requirements:

• In this project, identifying and exploiting vulnerabilities in a controlled

environment was paramount to understanding Moodle’s security

landscape. The controlled environment simulated realistic attack

scenarios, such as SQL Injection, XSS (Cross-Site Scripting), CSRF

(Cross-Site Request Forgery), and privilege escalation, allowing for a

comprehensive analysis of the platform’s weaknesses. By safely

mimicking potential threats, I ensured that no real harm or data

compromise occurred during testing, preserving the integrity of the

project and the environment. This approach facilitated an in-depth study

of the root causes of vulnerabilities, such as insufficient input validation

or insecure communication protocols..

• Post-identification, the project shifted to implementing robust fixes

aimed at neutralizing these vulnerabilities. For instance, applying strong

input validation mechanisms helped sanitize data inputs to prevent

malicious payloads. Token-based CSRF protections were deployed to

secure user sessions from unauthorized actions, while encoding practices

mitigated XSS risks by ensuring that web browsers interpreted user

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 19

inputs safely. This cycle of exploitation and resolution not only fortified

the Moodle platform against known vulnerabilities but also provided a

replicable methodology for security testing in similar web applications.

2.1.2. Feature Requirements:

 Integrating OpenAI APIs into Moodle necessitated striking a delicate balance between

usability and security. The primary feature requirement was to empower teachers with

an automated quiz-generation tool, leveraging OpenAI’s advanced capabilities to

create meaningful and customizable assessments. The integration was designed to

ensure a seamless user experience, emphasizing simplicity in accessing and utilizing

the feature while maintaining stringent security protocols. The project implemented

secure API communication over HTTPS to prevent man-in-the-middle attacks, and

API keys were handled securely within the plugin code to protect against unauthorized

access. These measures were coupled with user-centric design principles to enable

educators to interact effortlessly with the feature.

2.1.3 . Development Requirements:

The project emphasized adhering to well-defined development requirements to

maintain consistency, modularity, and scalability in its implementation. Docker was

employed to create consistent development environments.

Figure 2.1. Using Docker as container

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 20

The team also adopted PHP best practices, including using object-oriented

programming and adhering to Moodle’s plugin development architecture, which is

essential for integrating seamlessly into the existing ecosystem. The plugin was built

as a modular and extendable component, adhering to Moodle's API guidelines to

ensure compatibility with future platform updates. Moreover, security was deeply

embedded into the development process by conducting regular code reviews and

employing static analysis tools to identify vulnerabilities in the codebase. The

development practices also included version control using Git, allowing for effective

collaboration and tracking of changes, further ensuring the project’s stability and

scalability. These practices, combined with Docker’s containerization, enabled a

smooth and efficient development workflow, laying a strong foundation for the

project’s success.

2.2. Degisn Features

2.2.1. Security Improvements

The project prioritized security improvements as a critical aspect of its design features,

focusing on preventing common vulnerabilities while strengthening Moodle’s defenses

against emerging threats. Input validation and encoding were implemented to mitigate

XSS attacks, ensuring that user inputs were sanitized and processed safely before

rendering in the browser. This prevented malicious scripts from being executed,

safeguarding both the platform and its users. Token-based CSRF protection

mechanisms were incorporated to enhance session security by requiring unique,

session-bound tokens for sensitive user actions. This measure effectively prevented

unauthorized requests from being executed on behalf of legitimate users

Together, these improvements elevated the security posture of the Moodle platform,

making it more resilient to a wide range of attacks while maintaining user trust and

system integrity.

2.2.2. OpenAI Integration

The integration of OpenAI into Moodle represented a groundbreaking advancement in

automating quiz generation. A custom plugin was developed using PHP, adhering to

Moodle’s plugin architecture to ensure seamless integration into the platform. This

plugin featured an intuitive user interface designed specifically for educators, enabling

them to define quiz parameters such as topics, difficulty levels, and question types.

The plugin communicated securely with the OpenAI API via HTTPS, ensuring that

data exchanges remained encrypted and protected from interception.

2.2.3. Monitoring and Automation

Monitoring and automation were integral design features aimed at maintaining the

project’s efficiency and security over time. Automated cron jobs were configured to

handle repetitive tasks such as scheduled quiz generation and vulnerability scanning.

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 21

These jobs ensured that the system remained proactive in identifying and addressing

potential issues, reducing manual overhead and the risk of oversight.

Figure 2.2. Using Cron for automatically handling tasks

For instance, regular vulnerability scans were automated to identify any emerging

security threats, ensuring that the platform remained compliant with best practices.

Additionally, the automated quiz generation system utilized pre-defined schedules to

create quizzes, allowing educators to plan assessments well in advance without manual

intervention. This level of automation enhanced the platform’s usability while

ensuring that security monitoring remained continuous and effective. By embedding

automation into the design, the project achieved a balance between operational

efficiency and robust security, laying the groundwork for sustainable use and further

development.

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 22

Figure 2.3. Cron has to be run all time

Chapter 3: OPENAI API INTEGRATION, SECURITY TESTING AND

RESULTS EVALUATION

3.1. Quiz Generator Integration

3.1.1. Plugin Development

The following diagram shows the database structure for the quiz and question bank in

Moodle

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 23

Figure 3.1. Database structure for the quiz and questions bank

The quiz data model has a fairly large pool of database tables, so the first step in

explaining them is to provide some order. Conceptually it is possible to distinguish

between the tables holding the teacher-supplied data, defining quizzes and questions,

and the tables storing all the data that is generated when students interact with the

quizzes and questions.

A further simplification is possible by separating out the questiontype specific tables.

They are logical extensions to other tables and therefore are not necessary for

understanding the general basic model. They are therefore explained on the developer

documentation page for the individual question types.

The diagram below shows how the most important tables are linked to one another.

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 24

Figure 3.2. Quiz related tables links

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 25

While this one show how the newly add quiz plugin works and its flows

Figure 3.3. Quiz generator work flows

To integrate OpenAI with Moodle, a plugin folder was created inside the local

directory of Moodle's file structure. This plugin acts as a bridge between Moodle’s

user interface and OpenAI’s API. The folder was uploaded as a ZIP file through

Moodle's Site Administration > Plugins > Install Plugins interface, allowing

administrators to seamlessly add this functionality without manual file handling.

Key elements inside the plugin folder include:

db/install.xml: Defines the database schema for storing plugin-specific configurations

or generated quiz metadata.

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 26

settings.php: Provides a user interface in Moodle for configuring API keys and other

parameters.

lib.php and index.php: Implements the core functionality, handling API

communication and user interactions.

The modular approach ensures the plugin is isolated, easily maintained, and adheres to

Moodle’s architecture, allowing it to coexist with other extensions.

Figure 3.4. Questions generated by Quiz Generator by OpenAI

3.1.2 API Communication:

• Utilized secure HTTPS communication with the OpenAI API.

• The plugin sends an HTTP request to OpenAI’s API endpoint

• Handled API keys securely to prevent unauthorized usage.

• The API processes the request and generates a response containing structured text

or JSON data representing quiz questions and answers.

• The plugin parses the response, formats the questions into Moodle-compatible

structures, and optionally stores them in the database or question bank.

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 27

Figure 3.5. Questions go to question bank

After being stored in questions bank, these questions can be used for good all up to the

teachers/instructor. They view them on the Moodle interface and review or modify

them before deploying them in quizzes or assignments.

3.2. Fake Attacks Simulated

3.2.1. Open Redirect Vulnerability (CVE-2022-45143)

Step 1: Find a Redirect Endpoint:

o Look for a URL in Moodle platform that includes a redirect or URL

parameter. Example:

bash

http://example.com/redirect?url=http://malicious.com

Step 2: Test the Redirect:

o Replace the url parameter with a link to a fake or safe malicious site (e.g.,

http://test-attack.com).

o Click the link or share it to simulate how an attacker might trick a user.

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 28

Figurue 3.6. Attack using Open Redirect Vulnerability

Step 3: Check the Behavior:

o If the system redirects to the fake URL, the vulnerability is confirmed.

Prevention (to simulate a fix):

• Add URL validation to only allow redirection to trusted domains.

• Implement whitelists in Moodle’s code.

3.2.2. CSRF (Cross-Site Request Forgery) (CVE-2014-7833)

Step 1: Create a Malicious HTML Form:

Step2: Create a file called csrf_attack.html with the following code:

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 29

Figure 3.7. Malicious file to exploit CSRF

Step 3: Host the File:

o Serve the csrf_attack.html file using a simple web server (e.g., Python):

bash

python3 -m http.server 8080

o Access it at http://localhost:8080/csrf_attack.html.

Step 4: Trigger the Attack

o While logged into Moodle as an admin, open the malicious webpage.

o Observe if it performs the unintended action (e.g., assigns admin role to

a user).

Prevention (to simulate a fix):

• Use Moodle's built-in CSRF tokens (sesskey parameter).

• Validate requests using require_sesskey() in Moodle code.

3.2.3. Stored XSS (CVE-2021-40524)

Step 1: Understand the Stored XSS Attack

Stored XSS occurs when a malicious script is injected into a form or input field (e.g., a

forum post or comment). The script is stored in the database and executed whenever

the affected page is loaded by a user.

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 30

Step 2: Identify a Vulnerable Input Field in Moodle

Moodle has various input fields where users can submit content. For example:

- Forum Posts: Moodle allows users to create and reply to forum posts.

- Comment Boxes: Moodle supports comments in activities or resources.

- Profile Fields: Users can edit their profile and submit text in certain fields.

Step 3: Inject a Malicious Script

- Log in to Moodle:

- Use an account with permissions to post or comment (e.g., a teacher or student

role).

- Navigate to a Comment or Post Section:

- Go to a forum, activity, or profile section that accepts user input.

- Submit Malicious Input:

- In the input field, submit a script: <script>alert('XSS Attack!');</script> in html

If the system is vulnerable, this script will be stored in the database and executed

whenever a user visits the page.

Step 4: Verify the Attack

- Visit the Affected Page:

- Log in as another user (e.g., a student) and visit the page where the malicious

content was posted.

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 31

Figure 3.8. Cyberattack using XSS vulnerability

- Check for Script Execution: If the site is vulnerable, a pop-up alert with the

message XSS Attack! will appear.

Prevention:

• Sanitize Input:

Use Moodle's clean_param() function to validate and sanitize inputs before storing

them in the database.

• Sanitize Output:

Use Moodle's s() function to encode output safely before rendering it on the page

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 32

Figure 3.9. Site after being secured

As figure above, after applying both prevention and adjustments in the code, page

came back to normal. The macious content also disappeared

I also properly secured the installation to guarantee the site as safe as possible

Secure Configuration:

- Enable HTTPS/SSL

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 33

Figure 3.10. HTTPS enabled

- Set strong password policies

Figure 3.11. Strong password policy applied

- Configure session timeouts

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 34

- Limit login attempts

- Disable guest access if not needed

- Keep Moodle and all plugins updated

- Use secure file upload settings

Legitimate Security Testing:

- Run Moodle's built-in security overview report

Figure 3.12. Security report

- Check permissions settings

- Verify user role configurations

- Test backup/restore procedures

- Audit plugin security settings

- Monitor system logs

- Review authentication methods

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 35

3.3.3. Result Evaluation:

Figure 3.13. Log in/Sign up Interface

Figure 3.14. Homepage/Dashboard of the site

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 36

Figure 3.15. Backend handling and processing quiz generate request

Initially, the quiz generator was designed to accept single words or short keywords as

input, which worked well for generating broad and generalized questions. However,

shifting to long-text inputs, such as paragraphs or detailed material, significantly

enhances the power and relevance of the generated quizzes. By providing a

comprehensive context, the AI can craft more specific, nuanced, and accurate

questions tailored to the actual teaching content. This approach aligns better with

educational practices, as it directly leverages the material being taught, ensuring the

generated quizzes are more meaningful and closely related to the course objectives.

The switch also minimizes the need for manual adjustments by teachers, streamlining

the process and making the feature far more effective in real-world use.

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 37

Figure 3.16. Questions generated about Danang University

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 38

…………………………………………………………………………………………...

Security of E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 39

Security for E-Learning Website

Perfomed Student : Bui Quoc Huy Instructor : Nguyen The Xuan Ly 40

CONCLUSION

 Achievements

The project successfully demonstrated the integration of OpenAI's API within Moodle

to generate quizzes, providing an innovative feature for enhancing the educational

experience. Additionally, the implementation of security testing strategies, including

simulated attacks like XSS, SQL Injection, and other vulnerabilities, highlighted areas

for improvement in Moodle’s defense mechanisms. The focus on patching

vulnerabilities and improving input validation showcases significant progress in

bolstering Moodle's resilience against common threats.

Limitations

Despite the successes, the project faced several limitations. The integration of the

OpenAI API was designed as a demonstration and is not fully optimized for large-

scale deployments. Furthermore, while the project covered several attack simulations,

it could not encompass all potential vulnerabilities due to resource and time

constraints. The security testing relied heavily on manually crafted scenarios, limiting

the exploration of more advanced or rare attack techniques. Lastly, the absence of in-

depth deployment testing for diverse environments restricts the broader applicability of

the findings.

Development Orientation

Future development will focus on optimizing the OpenAI quiz generator to support

larger datasets and more complex interactions. Enhancing Moodle’s defenses by

integrating real-time monitoring tools, such as Burp Suite and SQLMap, will be

prioritized to ensure proactive vulnerability management. Additionally, the

implementation of automated testing frameworks will facilitate a broader analysis of

security flaws. Efforts will also include exploring advanced authentication

mechanisms and encryption strategies to further secure user data and prevent privilege

escalation or information leaks. This ongoing development aims to make Moodle a

more robust and secure platform for educational institutions worldwide.

REFERENCES

{bold, size 14}

{Để 2 dòng trống}

Moodle Documentation and Forums

Moodle Plugin Development Guide: https://docs.moodle.org/dev/Plugin_development

Moodle Security Guidelines: https://docs.moodle.org/secure/

Moodle Community Forums: https://moodle.org/mod/forum/

OpenAI Documentation and Resources

OpenAI API Documentation: https://platform.openai.com/docs/

Examples of GPT-3 Use Cases: https://openai.com/blog/gpt-3-apps/

Best Practices for OpenAI API Usage: https://platform.openai.com/docs/best-practices

PHP and Plugin Development

PHP Official Documentation: https://www.php.net/docs.php

Secure PHP Development: https://owasp.org/www-project-secure-php-development/

AI in Education

AI in Education Overview: https://www.educationdive.com/news/how-ai-is-shaping-

education/

Benefits of AI-Powered Learning Tools:

https://edtechmagazine.com/k12/article/2021/07/how-ai-changing-classrooms

Security and Vulnerability Testing

OWASP Testing Guide: https://owasp.org/www-project-web-security-testing-guide/

Tools for Web Security Testing: https://owasp.org/www-community/Testing_Tools

Docker Resources

Docker Documentation: https://docs.docker.com/

Using Docker for Moodle: https://moodledev.io/general/releases/docker

Miscellaneous

RESTful API Security Guidelines: https://restfulapi.net/security-essentials/

AI Ethics in Education: https://www.unesco.org/en/digital-learning/ai-education

Phụ lục 1

APPENDIX1

Phụ lục 2

APPENDIX 2

{bold, size 14}

