Please use this identifier to cite or link to this item: http://thuvienso.dut.udn.vn/handle/DUT/5565
DC FieldValueLanguage
dc.contributor.advisorPh.D. Nguyen, Van Hieuen_US
dc.contributor.authorLe, Hoang Ngoc Hanen_US
dc.date.accessioned2025-02-18T07:49:58Z-
dc.date.available2025-02-18T07:49:58Z-
dc.date.issued2023-
dc.identifier.urihttp://thuvienso.dut.udn.vn/handle/DUT/5565-
dc.description69 pages.en_US
dc.description.abstractIn this report, I introduce the project “MRI Synthesis Using Deep Learning Models” - a GANs-based generative network synthesizing multiple MRI images from a given single one. In fact, MRI data acquisition can be time-consuming, prone to motion artifacts, and limited by hardware constraints. The proposed method leverages the power of generative adversarial networks (GANs) to generate multi-domain MRI images from a single input MRI image. Experimental results on IXI and BraTS2020 datasets demonstrate the effectiveness of the proposed method compared to an existing method in metrics SSIM, PSNR and NMAE. The synthesized images can serve as valuable resources for medical professionals in research, education, and clinical applications.en_US
dc.language.isoenen_US
dc.publisherTrường Đại học Bách khoa - Đại học Đà Nẵngen_US
dc.subjectMRI dataen_US
dc.subjectDeep Learningen_US
dc.subjectnetworks (GANs)en_US
dc.titleMRI synthesis using Deep Learning modelsen_US
dc.typeĐồ ánen_US
dc.identifier.idDA.TI.24.776-
item.grantfulltextrestricted-
item.openairetypeĐồ án-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextCó toàn văn-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:DA.Công nghệ phần mềm
Files in This Item:
File Description SizeFormat Existing users please Login
4.DA.TI.24.776.LEHOANGNGOCHAN.PDFThuyết minh2.36 MBAdobe PDFThumbnail
Show simple item record

CORE Recommender

Page view(s)

5
checked on Apr 28, 2025

Download(s)

1
checked on Apr 28, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.