Please use this identifier to cite or link to this item: http://thuvienso.dut.udn.vn/handle/DUT/564
DC FieldValueLanguage
dc.contributor.advisorPhạm, Minh Tuấn, TS
dc.contributor.authorHoàng, Kim Ngọc
dc.contributor.authorNguyễn, Khánh Linh
dc.date.accessioned2024-11-05T08:44:51Z-
dc.date.available2024-11-05T08:44:51Z-
dc.date.issued2023
dc.identifier.urihttp://thuvienso.dut.udn.vn/handle/DUT/564-
dc.descriptionDA. TI.24.553; 113 trvi
dc.description.abstractThe main objective of the graduate project is to explore deep learning models for aiding in the detection of lung cancer from CT scans and symptoms. This application aims to revolutionize lung cancer prediction by harnessing the power of both symptom analysis for normal users and advanced CT scans image analysis for doctors. For normal users, the application explores the analysis of symptoms and risk factors commonly associated with lung cancer. This empowers individuals to be proactive about their health, seek appropriate medical attention, and undergo further diagnostic tests if necessary. Concurrently, for doctors and healthcare professionals, the project focuses on the analysis of CT scans images, a powerful tool in lung cancer diagnosis, enabling early detection of lung cancer, and ultimately, improving patient outcomes and survival rates.vi
dc.language.isoenvi
dc.publisherTrường Đại học Bách khoa - Đại học Đà Nẵngvi
dc.subjectSoftware Engineeringvi
dc.subjectLung cancervi
dc.subjectCT scansvi
dc.titleLung cancer prediction system using CT scans and symptomsvi
dc.typeĐồ ánvi
item.grantfulltextrestricted-
item.openairetypeĐồ án-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextCó toàn văn-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:DA.Công nghệ phần mềm
Files in This Item:
File Description SizeFormat Existing users please Login
4.DA.TI.24.553.HOANGKIMNGOC.pdfThuyết minh21.34 MBAdobe PDFThumbnail
Show simple item record

CORE Recommender

Page view(s)

1
checked on May 4, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.