Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: http://thuvienso.dut.udn.vn/handle/DUT/5729
Trường DCGiá trị Ngôn ngữ
dc.contributor.advisorPhD. Phạm, Minh Tuấnen_US
dc.contributor.authorNguyễn, Tấn Hùngen_US
dc.date.accessioned2025-03-19T08:31:41Z-
dc.date.available2025-03-19T08:31:41Z-
dc.date.issued2022-
dc.identifier.urihttp://thuvienso.dut.udn.vn/handle/DUT/5729-
dc.description113 pages.en_US
dc.description.abstractElectronic commerce or ecommerce is a term for any type of business, or commercial transaction, which involves the transfer of information across the Internet. It covers a range of different types of businesses, from consumer-based retail sites, through auction or music sites, to business exchanges trading goods and services between corporations. It is currently one of the most important aspects of the Internet to appear. Unlike traditional commerce that is carried out physically with effort of a person to go and get products, ecommerce has made it easier for human to reduce physical work and to save time. E-Commerce, which was started in early 1990’s, has taken a great leap in the world of computers. To make the online shopping experience even better, there are a lot of new technologies which include recommendation systems. A recommendation system, or a recommender system, is a subclass of information filtering system that looks to predict the “rating” a user would give to an item, in our case, a product. A recommender system learns from a customer and recommends products that the user will find most valuable from among the available products. Recommendation systems are changing from novelties used by a few E-commerce sites to serious business tools that are reshaping the world of E-commerce. Many of the largest commerce websites are already using recommender systems to help their customers find products to buy, for example: Amazon, eBay, Shoppe, Tiki. In this project, I built an ecommerce application from scratch using React, React Native and Nodejs. Then applying Machine Learning in building a practical Recommendation System AI which gives the user recommendations in real time.en_US
dc.language.isoenen_US
dc.publisherTrường Đại học Bách khoa - Đại học Đà Nẵngen_US
dc.subjectEcommerce applicationen_US
dc.subjectRecommendation systemsen_US
dc.subjectElectronic commerceen_US
dc.titleMulti-platform ecommerce application with ai recommendationen_US
dc.title.alternativeỨng dụng online market đa nền tảng áp dụng hệ thống gợi ýen_US
dc.typeĐồ ánen_US
dc.identifier.idDA.TI.22.814-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeĐồ án-
item.fulltextCó toàn văn-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
Bộ sưu tập: Khoa Công nghệ Thông tin - Công nghệ phần mềm
Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng
4.DA.TI.22.814.NGUYENTANHUNG.pdfThuyết minh2.59 MBAdobe PDFHình minh họa
Xem/Tải về
Hiển thị đơn giản biểu ghi tài liệu

Các đề xuất từ CORE

Lượt xem 50

42
đã cập nhật vào 17-12-2025

Lượt tải xuống 50

7
đã cập nhật vào 17-12-2025

Google Scholar TM

Kiểm tra...


Khi sử dụng các tài liệu trong Hệ thống quản lý thông tin nghiên cứu phải tuân thủ Luật bản quyền.