Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: http://thuvienso.dut.udn.vn/handle/DUT/273
Nhan đề: Nghiên cứu ứng dụng mạng nơ-ron hồi quy trong phân loại tin giả tiếng việt
Nhan đề khác: Research and application of recurrent neural networks in vietnamese fake news classification
Tác giả: Từ, Khắc Nghĩa
Từ khoá: Khoa học Máy tính;Xử lý ngôn ngữ tự nhiên;Mạng nơ-ron.
Năm xuất bản: 2023
Nhà xuất bản: Trường Đại học Bách khoa - Đà Nẵng
Tóm tắt: 
Trong lĩnh vực báo chí và truyền thông hiện nay, sự phát triển bùng nổ của các trang mạng xã hội đã giúp cho mọi người có thể dễ dàng trong việc chia sẻ thông tin. Tuy nhiên, bên cạnh những tiện ích mang lại, các tin giả rất dễ lan truyền đã gây ảnh hưởng không nhỏ đến sự phát triển của kinh tế xã hội. Trong những năm gần đây, các bài toán trong lĩnh vực xử lý ngôn ngữ tự nhiên đã đạt được nhiều thành tựu với việc sử dụng các mô hình học sâu (deep learning) đặc biệt là mạng nơ-ron hồi quy (RNN) hay mô hình biểu diễn tổng hợp ngôn ngữ theo ngữ cảnh (BERT). Từ những thực tiễn trên, tôi quyết định thực hiện luận văn nghiên cứu ứng dụng mạng nơ-ron hồi quy trong phân loại tin giả tiếng Việt qua đó xây dựng thử nghiệm chương trình thực nghiệm phân loại tin giả tiếng Việt. Luận văn này được chia thành 3 chương. Trong đó, chương 1 dành để nghiên cứu tổng quan về tin giả. Chương 2 viết về các kỹ thuật chính dùng trong bài toán phân loại tin giả như Word Embedding, mạng nơ-ron hồi quy, Transformer và BERT. Chương 3 tập trung vào các bước thực hiện để xây dựng ứng dụng phân loại tin giả tiếng Việt và đánh giá các mô hình.
Mô tả: 
LV. Mã số: 8480101, 93 tr
Định danh: http://thuvienso.dut.udn.vn/handle/DUT/273
Bộ sưu tập: LV.Khoa học máy tính

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng Đã có tài khoản, vui lòng Đăng nhập
4.LV.134059.TUKHACNGHIA.TT.pdf4.LV.134059.TUKHACNGHIA.TT992.12 kBAdobe PDFHình minh họa
4.LV.134059.TUKHACNGHIA.TV.pdf4.LV.134059.TUKHACNGHIA.TV5.24 MBAdobe PDFHình minh họa
Hiển thị đầy đủ biểu ghi tài liệu

Các đề xuất từ CORE

Lượt xem

8
đã cập nhật vào 03-07-2025

Lượt tải xuống

2
đã cập nhật vào 03-07-2025

Google Scholar TM

Kiểm tra...


Khi sử dụng các tài liệu trong Hệ thống quản lý thông tin nghiên cứu phải tuân thủ Luật bản quyền.